.
-
r————————
L ]

AD No

ADAO47724

00C FILE coPY

—a?

DISTRIBUTION STATEMENT A |

Approved for public releasej
Distribution Unlimited

YALE UNIVERSITY }
DEPARTMENT OF COMPUTER SCIENCEv

; " DEC

: -..-‘.;I._.', ."_\E—f"

16 1w9m
o

A




RR112] Y27 S

AL /277

Il—f\Pr ,,'/

Ly 3
Yale Sparse Matrix Packagel Sq I~ - 7

I. The Symmetric Codes.v
" S. C./Eisenstat,”M. C.lGui.'sky,a
1 g [
. H./Schultzy‘b. A. B./Shemnl'

i Distribution Unlimited

1 - —toL

This research was supported in part by ONR Grant N00014-76-0277,
NSF Grant MCS 76-11460, AFOSR Grant F49620-77-C-0037, and the Chevron 0il
Field Research Company.

znepartmen: of Computer Science, Yale University.

3Department of Electrical Engineering and Computer Science, University
of California, Berkeley.

ADepartment of Computer Sciences, The University of Texas at Austin.

W
, \/H,*
] Research Report #112
! L _ R
PTTT CUTION STATLAENT A L. pe v :
z -- S ———— R N} 4 i
Apprcovod fer public 1elease; ' o




l. Introduction

N

Consider the NxN system of linear equations
“¢) Mx=b,

where the coefficient matrix M is large, sparse, symmetric, and positive
definite. Such systems arise frequently in scientific computation,
e.g., in finite difference and finite element approximations to elliptic
boundary value prcblems. Cln this report,-we present a package of
efficient, reliahle, well-documented, a;; portable FORTRAN subroutines

for solving these systems. _

Direct methods for solving (1) are generally variations of
symmetric Gaussian elimination. We form the UtDU decomposition of A,
where U is unit upper triangular and D positive diagonal, and then

successively solve the triangular systems

t

(2) U y=0b, Dz =y, Ux = 2z,

When M is large (N >> 1), (dense) Gaussian elimination is prohibitively
expensive in terms of both the work (~ 1/3 N3 multiplies) and storage
(N2 words) required. But, since M is sparse, most entries of M and U
are zero and there are significant advantages to factoring M without
storing or operating on the zeroes appearing in M and U. Recently, a
number of implementations of sparse Gaussian elimination have appeared

based on this idea, cf. [2,5,6,7].

In section 2, we describe the scheme used for storing sparse
matrices, while in Section 3 we give an overview of the package from the
point of view of the user; for further details of the algorithms

employed, see [4,9]. In section 4, we {llustrate the performance of the

2 4




-2-
package on a typical model problem. Listings of the ordering

subroutines and the subroutines for factoring and solving sparse
symmetric positive definite systems appear as Appendices | and 2.

Appendix 3 contains a test driver, a sample output of which appears as

Appendix 4.




2. A Sparse Matrix Storage Scheme

Since the coefficient matrix M and the upper triangular factor U
are large and sparse, it is tnefficient to store them as dense matrices.
Instead, we store matrices using a row-by-row storage scheme used in
previous implementations of sparse symmetric Gaussian elimination,

cf. [1,4]).

This scheme requires three one-dimensional arrays: 1IA, JA, and A.
The nonzero entries of M are stored row-by-row in the REAL array A. To
identify the individual nonzero entries in a row, we need to know in
which column each entry lies. The INTEGER array JA contains the column
indices which correspond to the nonzero entries of M, i.e., if A(K) =
M(1,J), then JA(K) = J. In addition, we need to know where each row
starts and how long it is. The INTEGER array IA contains the indices in
JA and A where each row of M begins, i1.e., 1f M(I,J) is the first
(leftmost) entry of the Ith row and A(K) = M(I,J), then IA(I) = K.
Moreover, IA(N+l1) is defined as the index in JA and A of the first
location following the last element in the last row. Thus, the number
of entries in the Ith row is given by IA(I+1) - IA(I), and the
nonzero entries of the It'h row are stored consecutively in

A(IA(T)), A(TA(I)+1l), ..., A(IA(I+1)-1)

and the corresponding column indices are stored consecutively in

JA(TIA(T)), JA(IA(I)+l), ..., JA(IA(I+l)-1). o

-

1] o IR
DISTRIBUTION, AVAILABILITY COOES

Bt AVAIL end, o OPEGIAL

Yl




PIC TR TGRS C 5w s

4=

For example, the 5x5 matrix

is stored as

1 2 3 4 5 6 7 8 9 10 11 12 13

Since the matrix M is symmetric, it suffices to store only the
nonzero entries in the diagonal and strict upper triangle of M. The
storage scheme used is the same as before (except that nonzero entries ?
in the strict lower triangle of M are ignored), and our example matrix

would be stored as

JA 1 3 4 2 3 4 4 5 5

The overhead in this storage scheme is the storage required for the
INTEGER arrays IA and JA. But since IA has N+l entries and JA has one

entry for each element of A, the total overhead is approximately equal




to the number of nonzero entries in (the diagonal and strict upper

triangle of) M.




6=

3. A Sparse Symmetric Matrix Package

The package consists of three drivers and five subroutines (see
Figure 1). The ordering driver (subroutine ODRV) may be used to
symmetrically reorder the variables and equations so as to reduce the
total work (i.e. the number of multiplies) and storage required. The
solution driver (subroutine SDRV) 1is used to solve the (permuted) system
of linear equations. The test driver (program STST) sets up a model
sparse symmetric positive definite system of linear equations, calls
ODRV to reorder the variables and equations, and calls SDRV to solve the
linear system. In the remainder of this section, we describe each of
these routines in somewhat greater detail. The codes themselves are
extensively documented; for further details about the algorithas

employed, see [4,9].

Figure l: A schematic overview of the sparse symmetric matrix package

STST

7N

ODRV SDRV

ORDER SRO SSF SNF SNS




A. The Ordering Driver (ODRV)

The work and storage required to solve a large sparse system of
linear equations clearly depend upon the zero-nonzero structure of the
coefficient matrix. But since this matrix is symmetric and positive

definite, we could equally well solve the permuted system
t
(3) QMQ y=Qb, Qxm=y

given any permutation matrix Q. The permuted system corresponds to
symmetrically reordering the variables and equations of the original
system, and the net result can often be a significant reduction in the

work and storage required to form the ULDU decomposition of A (3].

The ordering driver (subroutine ODRV) uses the fmportant heuristic,
the minimum degree algorithm (implemented in subroutine ORDER), to
select Q. ORDER does a symbolic elimination on the nonzero structure of
the system., At each step, it chooses a pivot element from among those
uneliminated diagonal matrix entries which require the fewest arithmetic
operations to eliminate (ties are broken arbitrarily). This has the
effect of locally optimizing the elimination process with respect to the

number of arithmetic operations performed. See [8,9] for more details.

ORDER returns two one-dimensional INTEGER arrays of length N: P
contains the permutation of the row and column indices of M, i.e., the
sequence of pivots; and IP contains the inverse permutation, i.e.,
IP(P(1)) = 1 for I =1,2,...,N. If only the upper triangle of M is
being stcred, then the representation of M (i.e., the arrays IA, JA, and

A) must be rearranged using the subroutine SRO (PATH=2 in ODRV).




The user may bypass ODRV entirely by setting P(I) = IP(1) = I
for 1 = 1,2,3,...,N. Alternately, the user may substitute another
ordering subroutine for ORDER, as long as it produces the two
permutations P and IP. But again, 1f only the upper triangle of M is

being stored, the representation of M must be rearranged using SRO.

B. The Solution Driver (SDRV)

The solution driver (subroutine SDRV) is used to solve the
(permuted) linear system. Following Chang (1), SDRV breaks the solution
process into three steps: symbolic factorization (subroutine SSF),
numerical factorization (subroutine SNF), and back-solution (subroutine
SNS). First, SSF determines the nonzero structure of the rows of U from
the nonzero structure of the rows of M. Second, SNF uses the structure
information generated by SSF to compute the ULDU factorization of M.
Third, SNS computes the solution x from the factorization generated by

SNF and the right-hand side b.

By splitting up the computation, we have gained flexibLilfty. To
solve a single system of equations, it suffices to use SSF, SNF, and SNS
(PATH=1 in SDRV). To solve several systems in which the coefficient
matrices have the same nonzero structure, it suffices to use SSF only
once and then to use SNF and SNS for each system (PATH=2). To solve
several systems with the same coefficient matrix but different right

hand sides, it suffices to use SSF and SNF only once and then use SNS

for each system (PATH=3).

——




SR T -

C. The Test Driver (STST)

The test driver (program STST) is used to verify the performance of
the package on a particular computer system, and may be used as a guide
to understanding how to use the package. It generates the coefficient
matrix for the standard five-point finite difference approximation on a

3x3 grid to the Poisson equation and chooses the right-hand side so that

the solution vector x is (1,2,3,4,5,6,7,8,9). Since M is symmetric, we

can specify either the entire matrix (CASE=l) or only the upper triangle

(CASE=2). STST then calls ODRV to reorder the variables and equations,

and SDRV to solve the linear system, At each stage, the values of all

relevant variables are printed out. A sample output appears as Appendix L

4,




-10-

4. Performance

One of the most important aspects of any package is its performance
in terms of both the time and storage required to solve a typical
problem. In Tables 1 and Il, we present the time and storage required
to solve the familiar five-point finite difference equations on an n x n
grid for several values of n. These computations were performed in

single precision on an IBM 370/158 using the FORTRAN X optimizing

compiler.
Table 1
Time Required
Five-Point Operator on an n x n Grid
Crid | STST [ ORDER SRO SSF SNF sec/* SNS Total

20 0.083 | 0.657 | 0.043 | 0.100 | 0.407 | 14.016 | 0.087 | 0.593

30 0.190 | 1.750 | 0.100 | 0.257 | 1.430 | 13.002 | 0.230 | 1.917

40 0.340 | 3.656 | 0.177 | 0.503 | 3.700 | 12.449 | 0.470 | 4.673

g o catris - by

i it~ e =g bt

e —




-11-

Table 11
Storage Required

Five-Point Operator on an n x n Grid

Grid A,JA U Ju Total Mults.
20 1,160 3,368 1,889 7,259 35,195
30 2,640 9,456 4,538 18,496 127,666
40 4,720 19,926 8,423 36, 351 334,937




TATIND A [y e Ay

5.

(1]

(2]

(3]

(4]

(5]

References

A. Chang.
Application of sparse matrix methods in electric power system
analysis. In R. A. Willoughby, editor, Sparse Matrix Proceedings,

Report RAl, IBM Research, Yorktown Heights, New York. 1968,

A. R. Curtis and J. K. Reid
Two FORTRAN Subroutines for Direct Solution of Linear Equations
Whose Matrix is Sparse, Symmetric, and Positive Definite. Harwell

Report AERE-R7119, 1972.

S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.

Application of sparse matrix methods to partial differential
equations. Proceedings of AICA International Symposium on
Computer Methods for Partial Differential Equations, Bethlehem,

Pennsylvania 1975, pp. 40-45.

S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.

Efficient implementation of sparse symmetric Gaussian elimination.
Proceedings of AICA International Symposium on Computer Methods
for Partial Differential Equations, Bethlehem, Pennsylvania 1975,

pp . 33-39-

F. G. Gustavson.
Some basic techniques for solving sparse systems of linear

equations. In D. J. Rose and R. A. Willoughby, editors, Sparse

Matrices and Their Applications, Plenum Press, 1972, pp.4l=-52.




[6]

(71

[8)

(91

(10]

-13-

John E. Key
Computer Programs for Solution of Large, Sparse, Unsymmetric Systems
of Linear Equations. International Journal for Numerical Methods

in Engineering, Volume 6: 497-509, [973.

W. C. Rheinboldt and C. K. Mesztenyi.
Programs for the solution of large sparse matrix problems based
on the arc~graph structure. University of Maryland Computer

Science Technical Report TR-262, 1973.

D. J. Rose.

A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations. In R, Read,
editor, Graph Theory and Computing, Academic Press, 1972,

pp. 183-217.

A. H. Sherman.
On the Efficient Solution of Sparse Systems of Linear and
Nonlinear Equations. Ph.D. dissertation, Department of Computer

Science, Yale University, 1975.

A. H. Sherman.
Yale sparse matrix package user’s guide. Lawrence Livermore

Laboratory Report UCID-30114, 1975.




Appendix 1
Sparse Matrix Reordering Routines

Cx** Subroutine ODRV
C*** Driver for sparse matrix reordering routines
c

C
c
C
c
c
c
c
C
C
C
C
c
c
c
c
c
C
c
c
c
c
C
C
C
C
C
c
C
C
c
C
C
C
C
c
C
C
C
C
C
C
c
C
C
C
C
C

Class

SUBROUTINE ODRV
* (N, IA,JA,A, P,IP, NSP,ISP, PATH, FLAG)

PARAMETERS
Class abbreviations:
v - supplies a VALUE to the driver
- contains a RESULT returned by the driver
- is used INTERNALly by the driver
is an ARRAY
- 1s an INTEGER variable
- is a REAL variable.

mDp N
1

Parameter

|
i

The nonzero entries of the matrix M are stored row by row
in the array A. The array JA contains the corresponding column
indices; 1i.e. if A(K) = M(I,J), then JA(K) = J. The array IA
contains pointers to delimit the rows of M; IA(1) 18 the index
in JA and A of the first entry stored in the Ith row of M. For
example, the symmetric 5 by 5 matrix

1 0 2 3 0

0 4 0 0 O
2 0 56 0
3 0 6 7 8
0 0 0 8 9
would be stored as
11T 2 3 4 5 6 7 8 9
IAJ1l 4 5 7 910
JAlLl 3 4 2 3 4 &4 5 5
All 2 3 4 5 6 7 8 9 .

TA(I+1) - TA(1) 1is the number of nonzero entries in row I, so
TA(N+l), where N is the number of rows in M, is needed to
determine the length of the Nth row in A.

If M is a symmetric matrix only the elements of the upper
triangle (including the diagonal) need he stored in A, although
the full matrix may be stored.

vn | N - the number of rows/columns in matrix M.

vfa | A - coefficient matrix for the system of linear equations
| Mx = b, stored in compressed form.
| Size = number of nonzeros in M (or only in upper
| triangle of M for symmetric matrix).

vna | IA - pointers to first elements of each row in A.
| Size = N+l.

vna | JA - the column numbers corresponding to elements of A.
I

Size = size of A.




A minimum degree ordering of the matrix is done (ORDER). If
M 1s symmetric and only the upper triangle is being stored, the

array A needs to be reordered. !
vn | PATH - information on which subroutines are to be called.
| Values and meanings of PATH are: &
] 1 perform minimum degree ordering only.
| 2 perform minimum degree ordering and
} reordering of symmetric matrix. This ;
| value should be passed only if M 1is
| symmetric and only the nonzeros of the 3
| upper triangle of M are being !
| stored. If the nonzeros of the entire '
| matrix are being stored, PATH should ,
| equal 1. '
rn | FLAG - flag for error return from subroutines. Error values
| and their meanings are:
| 0 no error
| N+1 null row in A --1
| 9N+1 ORDER storage exceeded on row 1
| 1ON+1 ISP too small to allocate space i
| 11N+1 PATH out of bounds

The result of the ordering algorithm is a permutation of the
row numbers of M and the inverse of the permutation. The order
of the columns is the same as for the rows.

rna | 1P - inverse of the ordering of the rows/columns of M.
] Size = N.

rna | P - ordering of the rows/columns of M. 1
| Size = N.

Workspace is needed to hold the temporary vectors used in the ‘
ordering routine.
rn | NSP - dimensioned size of ISP. NSP must generally be at
| least 2*(number of pairs (I1,J) such that M(I,J)
| or M(J,1) is nonzero) + N for the ordering routine
| and at least N + size of A for the symmetric
[
[
I

reordering routine. :
ISP - storage space divided up for various arrays of
the subroutines.,

fa

OO O0OOCO0OO00000000000000000000000000000000000

INTEGER IA(1l), JA(l), P(l), IP(l), PATH, FLAG, VV, T™P, Q -
REAL A(1), 1ISP(l)

C
IF (PATH.LT.! .OR. PATH.GT.2) GO TO 111

Ch*x%xxk* Allocate space for ordering subroutine *dkkkkkkkkkkkkkkikdkkk
MAX = NSP/2
VW =1

LV = VV + MAX
IF (MAX.LT.N) GO TO 110
Chkkx%%k (Call minimum degree ordeting routine HEAkRkkkkkkAAkRkAhhkkkhkhkkd
FLAG = 0
CALL ORDER
* (N, 1IA, JA, P, IP, MAX, ISP(VV), ISP(LV), FLAG)
IF (FLAG.NE.Q) GO TO 100




c
ChRrARR

1
C

Allocate space, call symmetric reorder routine #&skAkakkhddin
IF (PATH.LT.2) GO TO 1

T™P = 1]
Q=TMP + N
IF (NSP+1-Q .LT. IA(N+l)-1) GO TO 110
CALL SRO
(N, IP, [A, JA, A, ISP(TMP), ISP(Q))
RETURN

C ** ERROR: Error Detected in ORDER

100

RETURN

C ** ERROR: Insufficient Storage

110

FLAG = 10*N + 1
RETURN

C ** ERROR: 1Illegal PATH Specified

111

OO0

FLAG = 11™N + 1]
RETURN
END

C*** Subroutine ORDER
Cx** Minimum degree ordering algorithm with threshhold search

c

*

nia

nia

nv

s NeNesNsNeNesEsN2zEs RN s N Ne!

*

oo

SUBROUTINE ORDER
(N, IA,JA, P,IP, MAX, VV,LV, FLAG)

Input variables: N, IA,JA, MAX
Output variables: #,IP, FLAG

Parameters used internally:

| W - value field of a linked list describing adjacencies of
| vertices.

| Size .ge. number of pairs (I,J) such that M(I,J) or
| M(J,1) 1is nonzero.

} LV = 1link field of the linked 1list.

| Size = size of VV.

| MAX -~ dimensioned size of VV and LV.

INTEGER IA(1), JA(1), P(1), 1P(1), VV(l), LV(l), FLAG,
DMIN, DTHR, S, SFS, TMP, VI, VJ, VK, VL

* Initialize free storage hARXXKARAKRKRKARR AKX AkARAAARAAKRSRRRARRLRAX KK

VK = 1
IF (MAX.LT.N) GO TO 109
DO 1 S=N,MAX
LV(S) = S+l
LV(MAX) = O
SFS = 1

C * Initialize ordering, degree, and adjacency *AkAkAXkkkAAAhkAARARRARR
DO 2 K=],N

VK = P(K)

IP(VK) = K

VV(K) = N+l

LV(K) = K
SFS = SFS + N

2




* Initialize nonzero structure ARRARAARRAARRRARAARARARRRARARAARRAANRARS
* For every vertex VK RRARRRRARRRRRARRARRANRARARRRARRARARRRRRARRARN AR
*kk For every vertex vJ adjacent to VK ARXRAARRAARRARRRAAAANRARARAA KR
DO 8 VK=1,N
JMIN = TA(VK)
JMAX = TA(VK+l) - 1
IF (JMIN.GT.JMAX) GO TO 101
DO 7 J=JMIN, JMAX :
V3 = JA(J) I
IF (VJ.EQ.VK) GO TO 7
C *k%k%x* Search for VJ in adjacency Of VK RRRAKARRRRRRAKRAARRARRANAARRRAAAR
LLK = VK
3 LK = LLK
LLK = LV(LK)
IF (VV(LLK) = VJ) 3, 7, &4
C k%x** Insert VJ in adjacency Of VK RAAAkhkRkRARRRRARRARAAARAARRARAARA XAk

aaooon

4 VV(VK) = VV(VK) + 1
IF (SFS.EQ.0) GO TO 109
LLK = SFS
SFS = LV(SFS)
VV(LLK) = VJ

LV(LLK) = LV(LK)
LV(LK) = LLK
C *%%k* Search for VK in adjacency of VJ #AXAARRXAARRRRRAXRRRAXAAARARANR
LLJ = VJ
5 LJ = LLJ
LLJ = LV(LJ)
IF (VV(@LLJ) -~ VK) 5, 7, 6
C *%*xx*x Insert VK in adjacency Of VJ ®KXXARAAkARRKAXKRAARRRRRRARAARAAAR
6 VV(VI) = VV(VJ) + 1
IF (SFS.EQ.0) GO TO 109
LLJ = SFS
] SFS = LV(SFS)
VV(LLJ) = VK
LV(LLJ) = LV(LJ)
LV(LJ) = LLJ
7 CONTINUE
8 CONTINUE

* Minimum degree algorithm with threshhold search *Akkkikkkkkkkkhkkkik
* Initialize vertex count and threshholds for search *#&kkkkkkkkhkhkkk
2 1=0
JMIN = ]
DTHR = 0
DMIN = N+N
C * While uneliminated vertices exist *xxkkkkhkikkhkkrAkRREkkrkkhkkkkikk
C *** Search for vertex VI of minimum degree **ikkkkikkkkkkkkkkhkhkkhkihk
9 JMIN = MAXO (JMIN, I+1)
DO 10 J=JMIN,N
VI = P(J)
IF (VV(VI).LE.DTHR) GO TO 11
10 DMIN = MINO (DMIN, VV(VI))
JMIN = 1
DTHR = DMIN
DMIN = N+N
GO TO 9

OO0

L g S




vy

MRS

*#%2% Number vertex VI of minimum de“ree RRRRRANARARARRARARRAARARAARRAAL
11 JMIN = J
I =1+
VJ = P(1)
P(J) = VJ
IP(VJ) = J
P(1) = VI
IP(VI) = 1
NI =1
**% NDelete eliminated vertices from adjacency of VI Skkdkhsrshhdditts
k4% For every vertex VK adjacent to VI ARAAKRARRRARKRRARAARRRAARAAAAR
LLI = VI
KMAX = (VV(VI) - NI) -~ N
IF (KMAX.LE.0) GO TO 14
DO 13 K=],KMAX
12 LI = LLI
LLI = LV(LI)
VK = VV(LLI)
kkkkx I1f VK eliminated, then delete from adjacency of VI *kkakkikkkdds
IF (IP(VK).CT.I) GO TO 13
LV(LI) = LV(LLI)
LV(LLI) = SFS
SFS = LL1
LLI = LI
GO TO 12
13 CONTINUE
k%% Eliminate vertex VI *AxkAXAARRARARAKARRKRARRKRARRAAKRRARRARKAX X A&
kkk For every vertex VK adjacent to VI ARkAAARkAAARRRRARRRARRRRARARA AR
14 LLI = VI
KMAX = (VV(VI) - NI) - N
IF (KMAX.LE.0) GO TO 21
DO 20 K=],KMAX
LT = LLI
LLI = LV(LI)
VK = VV(LLI)
*kxk* Merge adjacency of VI into adjacency of VK **kkkkikkkkkhkkkkiiikik
kkkkk For every vertex v] adjacent_ to VI *RAXAARRARKRAARRARANAARAAKRA
LLK = VK
L) = VI
JMAX = (VV(VI) - NI) - N
IF (JMAX.LE.0) GO TO 19
DO 18 J=1, MAX
1L.J = LV(LJ)
VJ = VV(LJ)
IF (VJ.EQ.VK) GO TO 18
kkkkkkk Search for VJ in adjacency of VK ... RAARRRRXAAAKARRAARARRAAR
15 LK = LLK
LLK = LV(LK)
VL = VV(LLK)
IF (VJ.LE.VL) GO TO 17
rAkkkkk _,,, while deleting eliminated vertices *NARAAAkAARAAXAAKAAALR
IF (IP(VL).GT.I) GO TO 16
LV(LK) = LV(LLK)
LV(LLK) = SFS
SFS = LLK
LLK = LK
16 GO TO 15

i i




A IR T S T A S

kikkad® Insert VJ in adjacency of VK *hdadkadAhAAAARARNARSANARANRRAR
17 IF (VJ.EQ.VL) GO TO 18
VV(VK) = VV(VK) + 1
IF (SFS.EQ.0) GO TO 109
LLK = SFS
SFS = LV(SFS)
VV(LLK) = VJ
LV(LLK) = LV(LK)
LV(LK) = LLK
18 CONT INUE
kkkxx 1f VK of minimal degree, then number vertex VK, ... Rdkkkhhkdka
19 IF (VV(VK).GT.VV(VI)) GO TO 20
I = 1+1
J = IP(VK)
vJ = P(1)
P(J) = VJ
IP(VJ) = J
P(I) = VK
IP(VK) = I
NI = NI + 1
*kkkx _ . recover storage for adjacency of VK, AAkAkSAAAAARAAAAARRRAR
TMP = LV(VK)
LV(VK) = SFS
SFS = TMP
kkkkk . and delete VK from adjacency Of V]I RRAXRRARRAAAARARARAKAAKRR K
LV(LI) = LV(LLI)
LV(LLI) = SFS
SFS = LLI
LLI = LI
20 CONT INUE
*%* Update degrees of uneliminated vertices adjacent to VI #*kkikkkkiik
k%% For every vertex VK in adjacency of VI AXARAAXkxxsakAAAAAKXKAXAXR
21 LI = VI
KMAX = (VV(VI) - NI) - N
IF (KMAX.LE.O) GO TO 24
DO 23 K=1,KMAX
LI = LV(LI)
VK = VV(LI)
kAkk*x Update degree of VK and threshholds for cyclic search *kkkkiaki
VV(VK) = VV(VK) - NI
IF (VV(VK).GE.DMIN) GO TO 23
IF (VV(VK).GT.DTHR) GO TO 22
DMIN = DTHR
DTHR = VV(VK)
JMIN = MINO (JMIN, IP(VK))

GO TO 23
22 DMIN = VV(VK)
23 CONT INUE

k%% Recover storage for adjacency of VI hkhhkhhhhkkhhkhhhkhhhhhhkhhkhhkk
24 TMP = LV(VI)

LV(VI) = SFS

SFS = TMP

IF (I.LT.N) GO TO 9

FLAG = 0
RETURN




C
C ®*% ERROR: Null row in A
101 FLAG = N + VK
RETURN

C ®** ERROR: Insufficient Storage
109 FLAG = 9*%N + VK
RETURN
END

e NeNe!
‘
)

Ch#% Subroutine SRO
C*** Symmetric reordering of sparse symmetric matrix
c
SUBROUTINE SRO
* (N, IP, IA,JA,A, TMP, Q)

Input variables: N, IP, IA,JA,A
Output variahles: 1A,JA,A

Parameters used internally:
nia | TMP - Initially, TMP(K) 1is set to the number of elements
| which will appear in the Kth row of M after
| reordering. Then TP 1is initialized to TA and
| USED to set Q.
| Size = N.
nia | Q - Initjally, Q(J) 1is set to the row in which A(J)
| (the element of the old A) will appear after
| reordering. Then it is set to the index of A(J) in
| the reordered matrix.
| Size = number of nonzeros in the upper triaagle of M.

The subroutine does not rearrange the order of the rows, but
arranges each row so that the elements which will be above the
diagonal after reordering are filled in. If M(I,J) 1s above the
diagonal but is below the diagonal after reordering, then M(J,I)
must be filled in, so some elements will appear on different rows
after SR) is finished.

o000 0O00000000000

INTEGER IP(1l), IA(1), JA(l), TMP(l), Q(1), @K

REAL A(l)

c

C *xkkkkx Initialize TMP  KAkkkkAkkhkkAXAAARRXAKAAAAKARARARRARARA KA kKKK X
DO 1 I=1,N

1 T™P(I) = O

C *kkkk* For each row of A *kkkkkkkkkkhkhkkkkhkhhkhhhhhkkrkhhhhhhkikk

DO 3 I=l,N
JMIN = IA(I)

JMAX = TA(I+1) -1
IF (JMIN.GT.JMAX) GO TO 3
C *&kkkkx For each element Of the row XAAXAARKKAXARARKAKRAAKARRRRAAAR
DO 2 J=JMIN, JMAX
K = JA(J)
C **xxxx*x Adjust TMP, Q, and adjust JA if necessary *kkdkdkkkkkkkikik
IF (IP(K).LT.IP(1)) JA(J) =1
IF (IP(K).GE.IP(1)) K =1

QW) =K
2 TMP(K) = TMP(K) + 1
3 CONTINUE




C
C

c

4

5

6

AhkkAX  Set new IA and
DO 4 I=],N
IA(I+]1) = IA(I)
T™P(1) = TA(I)

copy It into TMP ARRAAKARAAAAANKARARAARARAAK

+ TMP(1)

*hkrkt  (Q(J) gets position of A(J) after reordering ARARAAAKARAARAR

JMIN = IA(1)

JMAX = IA(N+1) -1

DO 5 J=JMIN, JMAX
K =Q(J)
Q(J) = TMP(K)
TMP(K) = TMP(K)

kkkkkk Reset JA and A
DO 7 J=JUIN, JMAX
IF (Q(J).EQ.J)
K = Q(J)
Q(J) = Q(K)
Q(K) = K
JAK = JA(K)
JA(K) = JA(J)
JA(J) = JAK
AK = A(K)
A(K) = A(J)
A(J) = AK
GO TO 6

7 CONTINUE

RETURN
END

+1

KARKARARARRRRARRRAARRRRRRRRRAARRARARRRRAR A AR R

GO TO 7




Appendix 2

Subroutines for Solving Sparse Symmetric Positive
Definite Systems of Linear Equations

Ck%x* Sybroutine SDRV
C***x Driver for subroutines for solving sparse symmetric positive

c definite systems of linear equations
c
SUBROUTINE SDRV
* (N, P,IP, IA,JA,A, B, Z, NSP,ISP,RSP, PATH, FLAG)
PARAMETERS

Class abbreviations are:

v - supplies a VALUE to the driver

r - contains a RESULT returned hy the driver
i - is used INTERNALly by the driver

a - is an ARRAY

n - is an INTEGER variable

f - is a REAL variable.

Class | Parameter

<+
T

The nonzero entries of the matrix M are stored row by row
in the array A. The array JA contains the corresponding column
indices; t.e. 1f A(K) = M(I,J), then JA(K) = J., The array IA
contains pointers to delimit the rows of M -- IA(1) is the index
in JA and A of the first entry stored in the Ith row of M.
Only the nonzero entries on or above the diagonal need be stored. 4
However, the subroutines will work if all nonzeros are stored.
For example, the symmetric 5 by 5 matrix

n

1 0 2 3
0 4 0 0 O
2 0 5 6 0
3 0 6 7 8
0 0 0 8 9
would be stored as
]1T 2 3 4 5 6 7 8 9
IA|J1l 4 5 7 910
JA |1l 3 4 2 3 4 4 55
All 2 3 4 5 6 7 8 9 .

IA(I+1) - IA(I) 1is the number of nonzero entries in row 1, so
IA(N+1), where N is the number of rows in M, is needed to
determine the length of the Nth row {n A.

cannot be the same vector.
Size = N,

s EeNeEsNsNesEsEeNesNeoEsNeNesEs s N2 s Nz Es Nz E2 Rz Kz Es K2 s N2 o s s K2 e 2 e e N2 N2 E2 N2 N2 R 2 N2 X2 R e K2 N2 N e X 2 )

vn I N - the number of rows/columns in matrix M.

vfa | A - coefficient matrix for the system of linear equations
] Mx = b, stored in compressed form.
| Size = number of nonzeros in upper triangle of M
| (or the number of nonzeros in all of M).

vna | 1A - pointers to the first element of each row in A.
| Size = N+l.

vna | JA - the column numbers corresponding to elements of A.
| Size = size of A.

vna | B - right-hand side for the equation Mx = b, B and Z
I
|

- y



o000 00000a0000000000000cO000000000000000000 00000

<
=]

"
=

vna

vna

na

| 2 - solution vector for the equation Mx = b, B and 2
| cannot be the same vector.
| Size = N.

The solution of the system is done in three stages:

SYMFAC - The matrix M {8 processed symbolically to determine
where fillin will occur during factorization.

NUMFAC - The matrix M 1is factored numerically into two
triangular matrices.

NUMSLV - The system resulting from NUMFAC is solved.

For several systems with fdentical nonzero structures, SYMFAC
need be done only once, then NUMFAC and NUMSLV are done for each
system. For several system with identical matrices M and
different right-hand sides, SYMFAC and NUMFAC need be done only
once, then NUMSLV is done for each right-hand side.

| PATH - information on which subroutines are to be called.
| Values and meanings of PATH are:

| 1 perform SYMFAC, NUMFAC and NUMSLV.

| 2 perform NUMFAC and NUMSLV. (SYMFAC is

| assumed to have been done in a manner

| compatible with the driver’s storage

| allocation.)

| 3 perform NUMSLV only. (SYMFAC and NUMFAC
| are assumed to have been done.)

| FLAG - flag for error return from subroutines. Error values
] and their meanings are:

]

|

|

|

]

[

|

|

0 no error

N+1 row I of A is null

M+l duplicate entry on row I of A

6N+1 storage exceeded on row I in SYMFAC
TN+1 storage exceeded in NUMFAC

SN+1 diagonal element=0 on row I in NUMFAC
10N+1 ISP/RSP too small to allocate space
1IN+1 PATH out of bounds

The rows and columns of the original matrix M can be
arbitrarily reordered before calling the driver. If no reordering
is done, then P(I) = IP(I) = 1 for I={,N. The answer vector 2
is returned in the original order.

| P - the ordering of the rows (and columns) of M. P(I)
i is the number of the row of M which becomes the
| Ith row after reordering.

| Size = N.
|
|
[

1P - the inverse of the ordering of the rows of M. That
is, IP(P(1)) =1 for I=l,N.
Size = N.

Workspace is needed to hold the factored form of the matrix
M plus various temporary vectors.

} ISP - integer storage space divided up for various arrays
| of the subroutines. ISP and RSP should be the

| same array. This allows declaration of all real

| storage to be double precision.

| NSP - dimensioned size of ISP and RSP. NSP generally

| must be at least 4N+l + 2*K (where K = (number of
| nonzeros in the upper triangle of M)), since ISP




T TR R e T TR T

Rt b

o W T A

4
]
\
’
3
Y

fa

aoncocoOonooan

Chhkhkhkk

c

Chixkhk

C
C k%

100
C **

110

C **
111

*

and RSP must hold:
four vectors of fixed length;
JU (with size = K + fillin - compression);
U (with size = K + fillin).

RSP~ real storage space divided up for various arrays of
the subroutines. ISP and RSP should be the same
array. This allows declaration of all real storage
to be double precision.

INTEGER P(1), IP(1), IA(l), JA(l), ISP(l), PATH, FLAG,
Q, D, U, ROW, TMP, UMAX

REAL A(l), B(l), 2(l), RSP(l)

EQUIVALENCE (ISP(1), RSP(l))

IF (PATH,LT.1 .OR. PATH.GT.3) GO TO 111

Initialize and divide up temporary storage **dkkkhkhkhhhhkhis
1y =1

Iy =1JUu + N

JL = 1IU + N+l

JU =JL + N

Q =NSP- N

JMAX = Q - JU

IF (JUMAX.LT.0) GO TO 110

Call subroutines HA*XkkkkAAAAXAXARKRRRARRKARRAKRARRA R KA KX Rk &k
FLAG =0
IF (PATH.GT.l) GO TO 1
CALL SSF
(N, P, IP, 1A, JA, 1ISP(IJU), ISP(JU), ISP(1U), JUMAX,
RSP(Q), ISP(JL), FLAG)
IF(FLAG.NE.O) GO TO 100

7 =q¢ -N
U = JU + ISP(IJU+(N-1))
ROW = Q

UMAX =D - U
IF (PATH.GT.2) GO TO 2
CALL SNF
(N, P, IP, TIA, JA, A,
RSP(D), ISP(IJU), ISP(JU), ISP(IU), RSP(U), UMAX,
RSP(ROW), TISP(JL), FLAG)
IF (FLAG.NE.0) GO TO 100

T™P = Q
CALL SNS
(N, P, RSP(D), ISP(IJU), ISP(JU), ISP(IU), RSP(U), Z, B,
RSP(TMP))
RETURN

ERROR: Error Detected in SSF, SNF, or SNS

RETURN

ERROR: Insufficient Storage

FLAG = 10*N + 1
RETURN

ERROR: Illegal PATH Specification

FLAG = 11*N + 1
RETURN
END




YALE SPARSE MATRIX PACKAGE - SYMMETRIC CODES
SOLVING THE SYSTEM OF EQUATIONS Mx = b

I. SUBROUT INE NAMES
Subroutine names are of the form Sxx where:

(1) the first letter is S for symmetric matrices;

(2) the second letter is either § for symbolic or N for
numerical processing;

(3) the third letter is either F for factorization or S for
solution.

II. CALLING SEQUENCES

The input matrix can be processed with an ordering subroutine
before using the remaining subroutines. If this is done and only
the upper triangle of M is being stored, SRO should be called to
reorder the matrix into symmetric form before using the other
subroutines. 1If an ordering subroutine 1is not used, set P(I) =
IP(I) =1 for I=1,N. Then the calling sequence is

SSF (symbolic factorization)

SNF (numerical factorization)

SNS (called once for each right-hand side).

III. STORAGE OF SPARSE MATRICES

The nonzero entries of the matrix M are stored row by row
in the array A. The array JA contains the corresponding column
indices; {.e. if A(K) = M(I,J), then JA(K) = J. The array IA
contains pointers to delimit the rows of M -- TA(I) 18 the index
in JA and A of the first entry stored in the Ith row of M.
Only the nonzero entries on or above the diagonal need be stored.
However, the subroutines will work if all nonzeros are stored.
For example, the symmetric 5 by 5 matrix

0

1 0 2 3
0 4 0 0 O
2 0 5 6 O
3 0 6 7 8
0 0 0 8 9
would be stored as
i 1 2 3 4 5 6 7 8 9 1
IAl1l1 4 5 7 910
JAll 3 4 2 3 4 4 5 5
All 2 3 4 5 6 7 8 9 .

IA(I+1) - IA(I) 1is the number of nonzero entries in row I, so
IA(N+l), where N is the number of rows in M, is needed to
determine the length of the Nth row in A.

The unit triangular matrix U 1is stored in a similar fashion
using the arrays 1IU, JU, and U except that an additional vector
IJU 1is used to compress storage of JU. IJU(K) points to the
starting location in JU of entries for the Kth row. Compression
occurs in two ways. First, if a row I was merged into the current
row K, and the number of elements merged in from row I (some tail
portion of row I) is the same as the final length of row K, then
the Kth row and the tail are identical and IJU(K) can point to
the start of the tail. Second, if some tail portion of the K-lst ?
row equals the head of the Kth row, then TIJU(K) can point to the
start of that tail section. For example, the nonzero structure of

o000 0000O0000000O00000000000O000000000000000000000000O0




N Rz s K N Rzl R K I e K e e N e e e e e e e e e e e e N el e Ha e e e N K Ke N R e e e K2 X N2 N2 K2 2 K Nz K2 Kz Nz e N e e N o e M o N M o I o]

Class

red

tore ignoring the diagonal, as
3

456

NO AKX OX X

88

[

gac
— W -
NS
BV N~ )
w S~

The diagonal entries of U are assumed to be equal to one
and are not stored. The array D contains reciprocals of entries
of the diagonal matrix in the U DU decomposition.

IV. ADDITIONAL STORAGE SAVINGS

In SSF and SNF, P and IP can be the same vector in the
calling sequences if no reordering of the matrix has been done
(i.e. P(I) = IP(1) = 1 for I=l,N).

In SNS, B ard Z can be the same; however, the right-hand
side B will be destroyed.

v. PARAMETERS
Following is a list of parameters to the programs. Names are

uniform among the various subroutines. Class abbreviations are:

v - supplies a VALUE to the subroutine
- contains a RESULT returned by the subroutine
- is used INTERNALly by the subroutine
is an ARRAY
- 1is an INTEGER variable
- 13 a REAL variable.

MmO R =R
]

Parameter

fva

fva

fvra

nvra

nr

nvra

nva

A

|

| coefficient matrix for the system of linear equations
| Mx = b, stored in compressed form.

| Size = either the number of nonzeros in the upper

| triangle nf M, or the number of nonzeros in
| all of M (see section III).

| B - right-hand side for the equation M™x = b.

| Size = N.

| D - inverse of diagonal matrix in UtDU factorization

| (also used for temporary results in SNF).

| Size = N.

| 1A - pointers to first elements of each row in A.

| Size = N+l.

| FLAG - flag for error return from subroutines. Error values
| and their meanings are:

| 0 no error

| N+I row I of A 1is null

| IN+1 duplicate entry on row I of A

| 6N+1 JU storage exceeded on row 1

| N+1 U storage exceeded

| 8N+l zero diagonal element on row I

| 1JU - pointers to the first elements of each row in JU,

| used to compress storage of JU.

| Size = N,

| 1P - inverse of the ocrdering of the rows of M. For

| example, 1f row | is the Sth row after reordering,
| then 1IP(1)=5,

| Size = N.




: Cnvra | IU - pointers to the first elements of each row in U,
3 c | Size = N+l.
‘ C nvra | JA - column numbers corresponding to elements of A.
C | Size = size of A.
Cnvra | JU - column numbers corresponding to elements of U.
C ] Size = size of U - compression.
C nv { JUMAX - declared dimension of JU.
C nv | N - number of rows/columns in matrix M.
C nva | P - ordering of rows (and columns) of M. P(I) 1{is
J Cc | the number of the row of M which becomes the Ith
: c { row after reordering.
1 c | Size = N.
1 C fvra | U - upper triangular matrix resulting from the
C ] factorization of M, stored in compressed form.
c | Size = number of nonzeros in upper triangle of M
C | plus £111in (IU(N+1)-1 after SSF).
C nv | UMAX - declared dimension of U.
C fra | 2 - solution vector for the equation Mx = b.
c | Size = N,
C
c -
c

C*** Subroutine SSF
C*%% Symbolic Ut~D-U factorization of sparse symmetric matrix

SUBROUTINE SSF
* (N, P,IP, IA,JA, 1JU,JU,IU,JUMAX, Q, JL, FLAG)

Input variables: N, P,IP, IA,JA, JUMAX
Qutput variables: 1I1JU,JU,IU, FLAG

Parameters used internally:
nia | JL - linked list of rows to be merged. 1If the Kth row is
| being processed, JL(K) contains the number of the
| first row to be merged with the Kth row, JL(JL(K))
| is the number of the second row, etc.
| Size = N.
nia | Q - Suppose M° 1is the result of reordering M. If
| processing of the Kth row of M’ (hence the Kth row
| of U) is being done, Q(J) 1is initially nonzero 1if
| M’ (K,J) 1is nonzero and above the diagonal. Since
] values need not be stored, each entry points to the
| next nonzero and Q(K) points to the first. N+l
| indicates the last element. For example, {f N=9 and
| the 5th row of M’ is
| 0xx0x00x0
| then Q will initially be
| aaaa8aalla (a - arbitrary).
| As the algorithm proceeds, other elements of Q are
| inserted in the list because of fillin.
| Size = N.

Internal variables:
JUMIN, JUPTR - are the indices in JU of the first and last
elements in either the last or the current row.
IMAX - length of longest row merged into Q.
LUI - number of elements in a row to be merged into Q.
LUK - number of elements in the current row (Q).

OOOO0OOOO0OO0O0O0O0O0O000O0O0O0O0O0O0O00000000C0




*

1

TR WP
o

kkkkkk

Rk ki

3

*kkkkk

khkkkk
] 4

5
Rk hhkk

INTEGER P(1l), IP(l),

kkkhrk Tnitialize
JUMIN = ]
JUPTIR = 0O
IU(l) = 1
DO | K=1,N

1A(l), JA(l),
vi, ™

Lju(l), Ju(ly, 1u(l),

Q(1l), Ju(l), FLAG,

RARKKRRRRRKRRRRRKRRKARRRRARARRRRRAKARRARARARRARRA KR

JL(K) = 0

FOor each row RARRKAARKARRARAXARRKRKERRRXARRRARKRXARAR AR AR AR

DO 15 K=l,N

Initialize Q to structure of Kth row above diagonal **k&kkik

LUK = 0
Q(K) = N+l
JMIN = IA(P(K))
JMAX = IA(P(K)+1) - 1
IF (JMIN.GT.JMAX) GO TO 1Ol
DO 3 J=JMIN, MAX
VJ = IP(JA(J))
IF (VJ.LE.K)
™ = K
M = QM
M = Q(M)
IF (QM.LT.VJ)
IF (QM.EQ.VJ)
LUK = LUK+l
QM) = VI
Q(VJ) = QM
CONTINUE

GO TO 3

GO TO 2
GO TO 102

Compute fillin for Q by
IMAX = 0
LJU(K) = JUPTR
I =K
Linking through JL and
I = JL(I)
IF (I1I.EQ.0) GO TO 8
LUL = IU(I+l) -« (IU(I)+1)
JMIN = IJU(L) + 1
JMAX = TJU(I) + LUL
IF (LUI.LE.IMAX) GO TO 5
IMAX = LUI
IJU(K) = JMIN
M=K
Merging each row with Q A*RXRKRAXAXKARAAXRKKKAARAARRRAARRR AR
DO 7 J=JMIN, JMAX
vJ = JU(J)
M = QM
™ = Q(M)
IF (QM.LT.VJ)
IF (QM.EQ.VJ)
LUK = LUK+l
QM) = VJ
Q(VJ) = QM
™ =VJ
CONTINUE
GO TO 4

ARAAKRRAARAKRRRRRRRAKRAAARRR AR A AR Ak Xk

khkhhkkhhkhkkhhhkhkkhrhkhhkkkhkxkhhkhkhhkikik

GO TO 6
GO TO 7




C
C *&kkkx  Check 1f row duplicates another. If not AAARAkkAAkRRAkAAkA
8 IF (LUK.EQ.LMAX) GO TO 14
C *%*kxdkx  gee if tall of K-lst row matches head of Kth H&kkkkkkkdhkkki
IF (JUMIN.GT.JUPTR) GO TO 12
1 = Q(K)
DO 9 JMIN=JUMIN, JUPTR
IF (JU(IMIN)-1I) 9, 10, 12
9 CONTINUE
GO TO 12
10 IJU(K) = JMIN
DO 11 J=JMIN, JUPTR
IF (JU(J).NE.I) GO TO 12
1 =Q(1) .
IF (1.GT.N) GO TO 14
11 CONTINUE
JUPTR = JMIN -1

C Akkkkk Set Kth row of U to Q HAAKKXAAXAKKRAAKRRAAKAKRRARAARRKAAAA K&

] 12 JUMIN = JUPTR + 1
JUPTR = JUPTR + LUK
& IF (JUPTR.CT.JUMAX) GO TO 106
I=K
DO 13 J=JUMIN, JUPTR
I =Q(I)

13 @) =~ 1

LJU(K) = JUMIN

C *&*xxkx If pmore than one element in row, adjust JL #*kkkkkkkikkkiik
14 IF (LUK.LE.l1) GO TO 15
I = JU(IJU(K))
JL(K) = JL(I)
JL(I) = K
15 IU(K+1) = IU(K) + LUK

FLAG = 0
RETURN
C
C ** ERROR: Null Row in A
101 FLAG = N + P(K)
RETURN
C ** ERROR: Duplicate Entry in A
102 FLAG = 2™ + P(K)
RETURN
C ** ERROR: Insufficient Storage for JU
106 FLAG = 6™ + K
RETURN
END

— R SR I TR e




C
C
C
C*** Subroutine SNF

C*** Numerical Ut-D-U factorization of sparse symmetric positive

c
C

[sNsNeoNoNesNsEsNeoNsNoNoNoNoNoNsNsNsNe NN NeNel

(¢ e

definite matrix

SUBROUTINE SNF
* (N, P,IP, IA,JA,A, D, 1JU,JU,IU,U,UMAX, IL, JL, FLAG)

Input variables: N, P,IP, IA,JA,A, 1JU,JU,IU
Output variables: D,U, FLAG

Parameters used internally:
niva | D - If the Kth row of U 1is being computed, D(l) through
| D(K-1l) contain reciprocals of the entries of the
diagonal matrix D from the decomposition. The
remainder of D is initialized to the structure of
the Kth row of M (after reordering) and is adjusted
to become the Kth row of U,

nia IL - IL(I) points to the first element of the Ith row to be
used in adjusting the current row,
nia JL - linked list of rows to be used in adjasting the current

|
|
|
|
!
I
| Size = N,
!
| row. If the Kth row is being processed, JL(K)
| contains the number of the first row to be used with
| the Kth row, JL(JL(K)) is the number of the second
] row, etc.
| Size = N.
INTEGER P(l), IP(l), TIA(l), JA(l), 1Ju(l), Ju(l), IU(l),
* UMAX, IL(1), JL(l), FLAG, VK, VJ
DIMENSION A(l), D(l), u(l)

kkkkkk Initialize JL, check storage *AkxkkkkkkahXkakkhhthhkkkaihn
IF (IU(N+1)~1 .GT. UMAX) GO TO 107
DO 1 K=1,N

1 JL(K) = 0

kkkkkk For each row H*AAKIKAKARKKARRRKAXRKXERRRAKRRRARARRRAK KKK kR k&
DO 10 K=1,N

*kkkk* Tnitialize D on and above the diagonal **kkkkkkkikkkahkhkkhs

JMIN = IU(K)

JMAX = TU(K+l) - 1

IF (JMIN.GT.JMAX) GO TO 3
MU = IJU(K) - IU(K)

DO 2 J=JMIN, MAX

2 DIJUMU+])) = O
3 D(K) = 0
VK = P(K)

JMIN = TA(VK)
JMAX = TA(VK+l) - 1
DO 4 J=JMIN, JMAX
VJ = IP(JA(J))
IF (K.LE.VJ) D(VJ) = A(J)
4 CONTINUE




C
C *%xk** For each element in lower triangle to be eliminated *#*kaii#k
DK = D(K) *
NXTI = JL(K)
5 I = NXTI

IF (1.EQ.0) GO TO 8
C o J ke ek k Change D and adjust 1L and JL KRRRARRRARRRRRARARARARRARKRRAX AR
NXTI = JL(I)
UKIDI = - U(IL(I)) * D(I)
DK = DK + UKIDI * U(IL(I))
U(IL(I)) = UKIDI
JMIN = IL( 1 ) + 1 }
MAX = 1U(I+1) - 1
IF (JMIN.GT.JMAX) GO TO 7
MU = TJU(I) - IU(I)
DO 6 J=JMIN, JMAX
6 D(JU(MU+J)) = D(JU(MU+J)) + UKIDI * U(J)
IL(I) = JMIN
J = JU(MU+JMIN)
JL(I) = JL(J)
JLJ) = I
7 GO TO 5

-

c
C *kk**xx GSet D(K) and copy rest of D into Kth row of U *kkkkkkkkkkik
8 IF (DK.EQ.0) GO TO 108
D(K) =1 /DK
JMIN = IU(K)
JMAX = TU(K+1) - 1
IF (JMIN.GT.JMAX) GO TO 10
MU = TJU(K) - JMIN
DO 9 J=JMIN. MAX
9 U(J) = DJUMU+T))
IL(K) = JMIN
I = JU(MU+IMIN)
JL(K) = JL(I)

JL(I) = K
10 CONT INUE
c
FLAG = 0
RETURN
c

C ** ERROR: Insufficient Storage for U
107 FLAG = 7*%N + 1
RETURN
C ** ERROR: Zero Pivot
108 FLAG = 8*N + K
RETURN

END




Ck** Subroutine SNS
C*** Numerical solution of sparse symmetric positive definite system of

c
c

sNeNeNo NN NNl

an

linear equations given Ut-D-U factorization

SUBROUTINE SNS
* (N, P, D, IJU,JU,IU,U, Z, B, TMP)

Input variables: N, P, D, 1IJU,JU,U, B
Output variables: 2

Parameters used internally:
| TMP - vector which gets result of solving Ut Dy = b.
] Size = N.

-
-
'

INTEGER P(l), TIJU(l), Ju(l), Lu(l)
REAL D(1), u(l), 2zZ(1), B(l), TMP(l)

kkkkkk Initialize TMP to the reordered B *akkkkkkkkkhhkkkkkhkkkkhkhk
DO 1 K=1,N
! TMP(K) = B(P(K))
*xkkk* Solve Ut Dy = b by forward substitution *xkkkkkkkkkkkikkk
DO 3 K=1,N
TMPK = TMP(K)
JMIN = IU(K)
JMAX = TO(K+[) - 1
IF (JMIN.GT.JMAX) GO TO 3
MU = IJU(K) - JMIN
DO 2 J=JMIN, JMAX

2 TMP(JU(MU+J)) = TMP(JU(MU+J)) + U(J) * TMPK
3 TMP(K) = TMPK * D(K)
kkkikx Solve Ux = y by back substitution H**kkkkkkkkkkkkdhkkkkhkd
K=N
DO 6 I=1,N
SUM = TMP(K)
JMIN = TU(K)

JMAX = IU(K+l) -1

IF (JMIN.GT.JMAX) GO TO 5
MU = TJU(K) ~ JMIN

DO 4 J=JMIN, JMAX

4 SUM = SUM + U(J) * TMP(JU(MU+J))
5 ™P(K) = SUM
Z(P(K)) = SIM
6 K = K-1
RETURN

END

f
|




Appendix 3

Test Driver for Sparse Symmetric Matrix Package

Ck** Program STST
C*** Test Driver for Symmetric Codes in Yale Sparse Matrix Package

HEECEE T AT S N T e T e—-—wyy

C
C Variables:
C
c NG - size of grid used to generate test problem.
c
c N - number of variables and equations (= NG x NG).
C
‘ C IA - INTEGER one-dimensional array used to store row pointers
: c to JA and A; DIMENSION = N+l.
b C
? C JA - INTEGER one-dimensional array used to store column
: c indices of nonzero elements of (upper triangle of) M;
? c DIMENSION = number of nonzero entrles in (upper triangle
: C of) M.
i C
: C A - REAL one-dimensional array used to store nonzero elements
t C of (upper triangle of) M; DIMENSION = number of nonzero
d c entries in (upper triangle of) M.
r c
; C X - REAL one-dimensional array used to store solution x;
C DIMENSION = N.
C
f C B - REAL one-dimensional array used to store right-hand-side b
: C DIMENSION = N.
! c
E C P - INTEGER one-dimensional array used to store permutation of
: G rows and columns for reordering linear system;
. C DIMENSION = N.
. ¢ 1
C IP - 1INTEGER one-dimensional array used to store inverse of
C permutation stored in P; DIMENSION = N,
C
C NSP - declared dimension of one-dimensional arrays ISP and RSP.
c
C ISP -~ INTEGER one-dimensional array used as working storage
o C (equivalenced to RSP); DIMENSION = NSP.
: C
c RSP - REAL one-dimensional array used as working storage
c (equivalenced to ISP); DIMENSION = NSP.
C
C

INTEGER IA(10l), JA(500), P(100), IP(100), ISP(1500),

* CASE, PATH, FLAG, APTR,VP,VQ, X,XMIN,XMAX, Y, YMIN, YMAX
REAL A(500), Z(100), B(100), RSP(1500)

g EQUIVALENCE (ISP(l), RSP(1))

1 DATA NSP/1500/, EPS/LE-5/

c
s INDEX(I,J) = NG*I + J - NG
A c
NG = 3

) N = NGMG




Chkxkak*x For CASE=] we stuore the entire matrix, for CASE=2 we store
Ckkkkk* only the upper triangular part
DO 5 CASE=1,2
C
Chixkxk Set up matrix for five point finite difference operator *akkxx
APTR = ]
DO 2 I=],NG
Do 2 J=1,NG
VP = INDEX (I, J)
P(VP) = VP
IP(VP) = VP
IA(VP) = APTR
SUM =0
XMIN = MAXO (1, I-1)
XMAX = MINGQ (NG, I+1)
YMIN = MAXO ( 1, J-1)
YMAX = MINO (NG, J+l)
DO 1 X=XMIN,XMAX
DO 1 Y=YMIN, YMAX
IF ((X-1) * (Y-J) .NE. 0) GO TO 1
VQ = INDEX(X, Y)
JA(APTR) = VQ
A(APTR) = 4
IF (VP .NE. VQ) A(APTR) = -1
SIM = SUM + A(APTR) * VO
Ck*kxx%% 1f CASE=2, do not store elements below diagonal *kxkkkkkkkkkkk
IF(VP.GT.V() .AND. CASE.EQ.2) GO TO 1
APTR = APTR + 1

1 CONTINUE
B(VP) = SUM
2 CONTINUE

IA(N+l) = APTR
NZA = IA(N+l) -1
C
Ck**%*% Qutput original array A kkkkkkkk
IF (CASE.£Q.1) PRINT 1001, NG,NG
1001 FORMAT (/” *** FIVE-POINT OPERATOR ON ‘, Il, ° BY ° Il, “ GRID *
* / ‘ (ALL ENTRIES OF MATRIX STORED) )
IF (CASE.EQ.2) PRINT 1002, NG,NG
1002 FORMAT (/° *%* FIVE-POINT OPERATOR ON ‘, 11, * BY * Il, * GRID *
* / ‘ (ONLY ENTRIES OF UPPER [RIANGLE STORED) °)
PRINT 1003, (IA(1),I=l,N), IA(N+l)
1103 FORMAT (/° COEFFICIENT MATRIX: °/

* /° IA (INDICES OF FIRST ELEMENTS IN ROWS)’
* /(1015))
PRINT 1004, (I,JA(1),A(1), I=1,NZA)
1004 FORMAT (/” JA A 7
* /7 1  COLUMN INDICES MATRIX “
* /(13, 110, F16.5))

PRINT 1005, (B(1), I=1,N)
1005 FORMAT (/° RIGHT HAND SINE B: *

* /(5F10.5))
c
C **kkk%  Call ODRV ARAKXKRAAXKARKAKKKAKRKAARKAKARARRARRRRRIKARRKRAKK S KX &
FLAG = 0
PATH = CASE
CALL ODRV
* (N, IA,JA,A, P,1IP, NSP,RSP, PATH, FLAG)
IF (FLAG.NE.O) GO TO 101
c

Chxrxt Qutput reordered array A *AkAXKAARRAARKARARXARKRAXKRRXRRARARARR
PRINT 1006, (I,P(I1),IP(I), I=1,N)

T Tt o 2 R o Ay TV ot T 7 T ST ot AR PR % MR 1 im0




1006

»

1007

1008

C
C *kkkx

c
C *xkkx

c
Chikkkkk

1009
*

1010

1011
C
5

C

k% hkk
101
1012

c
102
1013

FORMAT (/° ROW/COLUMN ORDERING FROM OORV: ‘/
/° P 1P ‘
/° 1 ROW/COL ORDERING INVERSE ORDERING *
/(13, 110, 120))
IF (CASE.EQ.2) PRINT 1007, (IA(I), I=1,N), IA(N+l)
FORMAT (/° REORDERED COEFFICIENT MATRIX: */
/° 1A (INDICES OF FIRST FLEMENTS IN ROWS) *

/(1015))
IF (CASE.EQ.2) PRINT 1008, (I,JA(1),A(1), I=1,NZA)
FORMAT (/° JA A

/° 1  COLUMN INDICES MATRIX *
(13, 110, Fl6.5))

Call SDRV RAKARARARKARKAAKAKRAKKAXXARKRRRAKKRRARRARRK KR AR kKK k&
PATH = |
CALL SDPRV
(N, P,IP, IA,JA,A, B, Z, NSP,ISP,RSP, PATH, FLAG)
IF (FLAG.NE.O) GO TO 102

Calculate error AREARRRRKXARRARRARRAARKRARRARRAkAAX AR AR Ak hkhkAkhkkkk
SIM = 0
DO 4 I=1,N
SUM = SUM + ((Z(I)-1)/1)**2
RMS = SQRT(SUM/N)

Output solution and error measure **ikkkkkkkkkkkrkkkkkkhkkixkk
PRINT 1009, (Z(1),I=1,N)
FORMAT (/° SOLUTION FROM SDRV:
/(5F10.5))
IF (RMS.LE.EPS) PRINT 1010, RMS
FORMAT (/° SOLUTION CORRECT: RM4S ERROXR = “, 1PE8.2)
IF (RMS.GT.EPS) PRINT 1011, RMS
FORMAT (/° SOLUTION INCORRECT: RMS ERROR = °, IPES.2)

CONTINUE
STOP

Error messages **kxARAkARXkXARRAKARRAKRXKARAARARRARKAR KA R AKXk
PRINT 1012, FLAG

FORMAT (/° ERROR IN ONRV: FLAG = °, I5)

STOP

PRINT 1013, FLAG

FORMAT (/° <RROR IN SDRV: FLAG = 7, 1I5)
STOP

END




Appendix 4

*** FIVE-POINT OPERATOR ON 3 BY 3 GRID
(ALL ENTRIES OF MATRIX STORED)

COEFFICIENT MATRIX:

TA (INDICES OF FIRST ELEMENTS IN ROWS)
1 4 8 11 15 20 24 27 31 34

JA A
COLUMN INDICES MATRIX
4.00000
-1.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000 L

-1.00000
-1.00000
4.00000
-1.00000
-1.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000
-1.00000
4.00000

WOV NVMVOENPOITNWRORAUVMENNUVEFROWNUWMWNPFE DN -

RIGHT HAND SIDE B:
-2.00000 =-1.00000 4.00000 3.00000 0.00000
7.00000 16.00000 11.00000 22.00000




|
i
!
(
]

ROW/COLUMN ORDERING FROM ODRV:

P 1P
ROW/COL ORDERING INVERSE ORDERING

@ENUVO W -
SOV LWV N -

I
1
2
3
4
5
6
7
8
9

SOLUTION FROM SDRV:
1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR = 1.39E-08

%% FIVE-POINT OPERATOR ON 3 BY 3 GRID
(ONLY ENTRIES OF UPPER TRIANGLE STORED)

COEFFICIENT MATRIX:

1A (INDICES OF FIRST ELEMENTS IN ROWS)
1 4 7 9 12 15 17 19 21 22

JA A
I  COLUMN INDICES MATRIX
1 1 4.00000
2 2 -1.00000
3 4 -1.00000
4 2 4,00000
5 3 -1.00000
6 5 -1.00000
7 3 4.00000
8 6 -1.00000
9 4 4.00000
10 5 -1.00000
11 7 -1.00000
12 5 4.00000
13 6 -1.00000
14 8 -1.00000
15 6 4.00000
16 9 -1.00000
17 7 4.00000
18 8 -1.00000
19 8 4.00000
20 9 -1.00000
21 9 4. 00000

RIGHT HAND SIDE B:
-2.00000 -1.00000 4.00000 3.00000 0.00000
7.00000 16,00000 11.00000 22.00000

e LA T

e e .




o e e e e e A A b A0 A A o7t B A i . i1 o

ROW/COLUMN ORDERING FROM ODRV:

P 1P
ROW/COL ORDERING INVERSE ORDERING

diianme o i 0
NN O W
O W NN N -

I
1
2
3
4
5
6
7
8
9

REORDERED COEFFICIENT MATRIX:

1A (INDICES OF FIRST ELEMENTS IN ROWS)
1 4 b) 8 9 13 15 18 19 22

JA A
COLUMN INDICES MATRIX
4.00000
-1.00000
-1.00000
4.00000
-1.00000
4.00000
-1.00000
4.00000
-1.00000
-1.00000
4.00000
-1.00000
-1.00000
4.00000
-1.00000
4.00000
-1.00000
4.00000
~1.00000
-1.00000
4.00000

I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

WINPT IPIPUNOOWVMENSRWNNEN-

SOLUTION FROM SDRV:
1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR = 1.39E-08




